FacebookLinkedin

Revista TecnoAlimentar

Novas perspetivas na produção de embalagens alimentares - Bibliografia

A indústria alimentar é uma das maiores utilizadoras de plásticos, sobretudo sob a forma de embalagens, mas também como películas que revestem os alimentos e os protegem. Contudo, com as novas diretivas europeias e mundiais que visam reduzir e preferencialmente eliminar o uso de plásticos, a indústria e a comunidade científica terão que se reinventar para desenvolver tecnologias que permitam com eficiência proteger alimentos e, ao mesmo tempo, não constituírem fontes de poluição ou contaminação para os ecossistemas.

EMBALAMENTO

Assim, terão que ser tecnologias biodegradáveis e com pouco ou nenhum impacto negativo. Um longo caminho foi já trilhado, havendo alternativas que parcialmente substituem os plásticos convencionais, mas que ainda não conseguem competir em termos económicos e também a nível das propriedades físicas. Ainda assim, o aparecimento de bioplásticos abre oportunidade para se introduzirem nestes biopolímeros compostos naturais que irão ajudar a conservar alimentos, criando uma base para futuras inovações. A próxima década será determinante para a reinvenção dos bioplásticos.

BIBLIOGRAFIA

Asgher, M., Qamar, S. A., Bilal, M., & Iqbal, H. M. N. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Research International, 137(June). https://doi.org/10.1016/j.foodres.2020.109625

Azadbakht, E., Maghsoudlou, Y., Khomiri, M., & Kashiri, M. (2018). Development and structural characterization of chitosan lms containing Eucalyptus globulus essential oil: Potential as an antimicrobial carrier for packaging of sliced sausage. Food Packaging and Shelf Life, 17(November 2017), 65–72. https://doi.org/10.1016/j.fpsl.2018.03.007

Bhargava, N., Singh, V., Mor, R. S., & Kumar, K. (2020). Trends in Food Science & Technology Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds : A review. Trends in Food Science & Technology, 105(September), 385–401. https://doi.org/10.1016/j.tifs.2020.09.015

Bilo, F., Pandini, S., Sartore, L., Depero, L. E., Gargiulo, G., Bonassi, A., Federici, S., & Bontempi, E. (2018). A sustainable bioplastic obtained from rice straw. Journal of Cleaner Production, 200, 357–368. https://doi.org/10.1016/j.jclepro.2018.07.252

Brody, A. L., Strupinsky, E. R., & Kline, L. R. (2001). Active Packaging for Food Applications. CRC Press.

Carocho, M., Heleno, S., Rodrigues, P., Barreiro, M. F., Barros, L., & Ferreira, I. C. F. R. (2019). A novel natural coating for food preservation: Effectiveness on microbial growth and physicochemical parameters. Lwt, 104(January), 76–83. https://doi.org/10.1016/j.lwt.2019.01.031

Cerqueira, M.A., Sousa-Gallagher, M.J., Macedo, I., Rodriguez-Aguilera, R., Souza, B.W.S., Teixeira, J.A., Vicente, A.A. (2010). Use of galactomannan edible coating application and storage temperature for prolonging shelf-life of "Regional" cheese. Journal of Food Engineering, 97, 87-94. https://doi.org/10.1016/j.jfoodeng.2009.09.019

Choi, I., Lee, J. Y., Lacroix, M., & Han, J. (2017). Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry, 218, 122–128. https://doi.org/10.1016/j.foodchem.2016.09.050

Dani, R., Singh, Y., Murdia, M., & Bagchi, P. (2021). Materials Today : Proceedings A review on applications of nanomaterials in hotel industry : Prospects for food processing , packaging , and safety. Materials Today: Proceedings, 2–4. https://doi.org/10.1016/j.matpr.2021.02.633

REGULAMENTO (CE) N. o 450/2009 DA COMISSÃO de 29 de Maio de 2009 relativo aos materiais e objectos activos e inteligentes destinados a entrar em contacto com os alimentos, (2009).

Europeia, C. (2019). Pacto Ecológico Europeu.

Europeia, C. (2020). Comunicado de imprensa -Mudar a forma como produzimos e consumimos : Novo Plano de Ação para a Economia Circular mostra o caminho a seguir para uma economia competitiva e neutra em termos de clima , aberta aos consumidores (pp. 11–12).

Foundation, E. M. (2016). The new plastics economy: rethinking the future of plastics.

Göksen, G., Fabra, M. J., Pérez-Cataluña, A., Ekiz, H. I., Sanchez, G., & López-Rubio, A. (2021). Biodegradable active food packaging structures based on hybrid cross-linked electrospun polyvinyl alcohol fibers containing essential oils and their application in the preservation of chicken breast fillets. Food Packaging and Shelf Life, 27(June 2020). https://doi.org/10.1016/j.fpsl.2020.100613

Guan, M., Zhang, Z., Yong, C., & Du, K. (2019). Interface compatibility and mechanisms of improved mechanical performance of starch/poly(lactic acid) blend reinforced by bamboo shoot shell fibers. Journal of Applied Polymer Science, 136(35), 1–8. https://doi.org/10.1002/app.47899

Gutiérrez, T. J., Mendieta, J. R., & Ortega-Toro, R. (2021). In-depth study from gluten/PCL-based food packaging films obtained under reactive extrusion conditions using chrome octanoate as a potential food grade catalyst. Food Hydrocolloids, 111(August 2020). https://doi.org/10.1016/j.foodhyd.2020.106255

Han, J. H. (2005). Innovations in Food Packaging. ElsevierAcademic Press.

Ibarra, V. G., Sendón, R., & Rodríguez-Bernaldo De Quirós, A. (2016). Antimicrobial Food Packaging Based on Biodegradable Materials. In Antimicrobial Food Packaging (Issue Figure 1). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800723-5.00029-2

Jafarzadeh, S., Mahdi, S., Salehabadi, A., Mohammadi, A., Uthaya, U. S., & Khalil, H. P. S. A. (2020). Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science & Technology, 100(December 2019), 262–277. https://doi.org/10.1016/j.tifs.2020.04.017

Jamróz, E., Juszczak, L., & Kucharek, M. (2018). Investigation of the physical properties, antioxidant and antimicrobial activity of ternary potato starch-furcellaran-gelatin films incorporated with lavender essential oil. International Journal of Biological Macromolecules, 114, 1094–1101. https://doi.org/10.1016/j.ijbiomac.2018.04.014

Jõgi, K., & Bhat, R. (2020). Valorization of food processing wastes and by-products for bioplastic production. Sustainable Chemistry and Pharmacy, 18. https://doi.org/10.1016/j.scp.2020.100326

Kakadellis, S., & Harris, Z. M. (2020). Don’t scrap the waste: The need for broader system boundaries in bioplastic food packaging life-cycle assessment – A critical review. Journal of Cleaner Production, 274, 122831. https://doi.org/10.1016/j.jclepro.2020.122831

Lopes, J., Gonçalves, I., Nunes, C., Teixeira, B., Mendes, R., Ferreira, P., & Coimbra, M. A. (2021). Potato peel phenolics as additives for developing active starch-based films with potential to pack smoked fish fillets. Food Packaging and Shelf Life, 28(December 2020). https://doi.org/10.1016/j.fpsl.2021.100644

Lozano-Navarro, J. I., Díaz-Zavala, N. P., Velasco-Santos, C., Martínez-Hernández, A. L., Tijerina-Ramos, B. I., García-Hernández, M., Rivera-Armenta, J. L., Páramo-García, U., & Reyes-de la Torre, A. I. (2017). Antimicrobial, optical and mechanical properties of Chitosan–Starch films with natural extracts. International Journal of Molecular Sciences, 18(5), 1–18. https://doi.org/10.3390/ijms18050997

Lukic, I., Vulic, J., & Ivanovic, J. (2020). Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scCO2 for active food packaging. Food Packaging and Shelf Life, 26(October), 100578. https://doi.org/10.1016/j.fpsl.2020.100578

Lv, S., Gu, J., Tan, H., & Zhang, Y. (2017). The morphology, rheological, and mechanical properties of wood flour/starch/poly(lactic acid) blends. Journal of Applied Polymer Science, 134(16), 1–9. https://doi.org/10.1002/app.44743

Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination Of Poly(lactic) acid and starch for biodegradable food packaging. Materials, 10(8), 1–22. https://doi.org/10.3390/ma10080952

Pedrosa, M. C., Ueda, J. M., Melgar, B., Dias, M. I., Pinela, J., Calhelha, R. C., Ivanov, M., Soković, M., Heleno, S., Silva, A. B. da, Carocho, M., Ferreira, I. C. F. R., & Barros, L. (2021). Preservation of Chocolate Muffins with Lemon Balm, Oregano, and Rosemary Extracts. Foods, 10(1), 165. https://doi.org/10.3390/foods10010165

Peelman, N., Ragaert, P., Meulenaer, B. De, Adons, D., Peeters, R., Cardon, L., & Impe, F. Van. (2013). Application of bioplastics for food packaging. Trends in Food Science & Technology, 32(2), 128–141. https://doi.org/10.1016/j.tifs.2013.06.003

Pereira, J.O., Soares, J., Costa, E., Silva, S., Gomes, A., & Pintado, M. (2019). Characterization of edible films based on alginate or whey protein incorporated with Bifidobacterium animalis subsp. lactis BB-12 and prebiotics. Coatings, 9, 493. https://doi.org/10.3390/coatings9080493

Ribeiro, C., CVicente, A.A., Teixeira, J.A., Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44, 63-70. https://doi.org/10.1016/j.postharvbio.2006.11.015

Rodsamran, P., & Sothornvit, R. (2017). Rice stubble as a new biopolymer source to produce carboxymethyl cellulose-blended films. Carbohydrate Polymers, 171, 94–101. https://doi.org/10.1016/j.carbpol.2017.05.003

Teixeira, E. D. M., De Campos, A., Marconcini, J. M., Bondancia, T. J., Wood, D., Klamczynski, A., Mattoso, L. H. C., & Glenn, G. M. (2014). Starch/fiber/poly(lactic acid) foam and compressed foam composites. RSC Advances, 4(13), 6616–6623. https://doi.org/10.1039/c3ra47395c

Tiwari, K., Singh, R., Negi, P., Dani, R., & Rawat, A. (2021). Materials Today : Proceedings Application of nanomaterials in food packaging industry : A review. Materials Today: Proceedings, xxxx, 1–4. https://doi.org/10.1016/j.matpr.2021.01.385

Ueda, J. M., Pedrosa, M. C., Fernandes, F. A., Rodrigues, P., Melgar, B., Dias, M. I., Pinela, J., Calhelha, R. C., Ivanov, M., Soković, M., Heleno, S. A., Carocho, M., Ineu, R. P., Ferreira, I. C. F. R., & Barros, L. (2021). Promising Preserving Agents from Sage and Basil : A Case Study with Yogurts. 1–23.

Wu, S., Wang, W., Yan, K., Ding, F., Shi, X., Deng, H., & Du, Y. (2018). Electrochemical writing on edible polysaccharide films for intelligent food packaging. Carbohydrate Polymers, 186(November 2017), 236–242. https://doi.org/10.1016/j.carbpol.2018.01.058

Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., Huang, X., Zhang, W., & Holmes, M. (2017). Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocolloids, 69, 308–317. https://doi.org/10.1016/j.foodhyd.2017.02.014

Zhang, W., Zhang, Y., Cao, J., & Jiang, W. (2021). Improving the performance of edible food packaging films by using nanocellulose as an additive. International Journal of Biological Macromolecules, 166, 288–296. https://doi.org/10.1016/j.ijbiomac.2020.10.185

Zhou, L., Ke, K., Yang, M. B., & Yang, W. (2021). Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite: A review. Composites Communications, 23(August 2020), 100548. https://doi.org/10.1016/j.coco.2020.100548