FacebookLinkedin

Revista TecnoAlimentar

Os insetos como fonte sustentável de proteína para consumo humano - bibliografia

Por: Carla S.S. Teixeira, Caterina Villa, Joana Costa, Isabel M.P.L.V.O. Ferreira, Isabel Mafra

REQUIMTE-LAQV Faculdade de Farmácia Universidade do Porto

RESUMO

Nos próximos anos, a população mundial irá aumentar substancialmente, o que trará uma série de desafios relativamente às necessidades alimentares crescentes, agravados pelos problemas associados às alterações climáticas. Como potencial solução global, a entomofagia (amplamente praticada em alguns países/regiões) tem ganho especial destaque nos últimos anos, embora a implementação nos países ocidentais seja limitada por questões culturais. Presentemente, a União Europeia regulamentou três espécies de insetos como novos alimentos permitindo a sua comercialização no espaço europeu. Os insetos são muito ricos em nutrientes essenciais e fáceis de criar (baixo consumo de água, alimento e emissão de gases), sendo excelentes alternativas nutricionais para alimentação humana. Adicionalmente, os insetos têm propriedades benéficas para a saúde humana (exemplo: anti-hipertensivas). Deste modo, a divulgação dos benefícios para a saúde e para o planeta associados ao seu consumo deve ser transmitida de forma clara ao consumidor de forma a promover a sua aceitação como alimento.

BIBLIOGRAFIA 

Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations. https://doi.org/10.22004/ag.econ.288998

Altomare, A. A., Baron, G., Aldini, G., Carini, M., & D'Amato, A. (2020). Silkworm pupae as source of high-value edible proteins and of bioactive peptides. Food Science and Nutrition, 8(6), 2652-2661. https://doi.org/10.1002/fsn3.1546

Brai, A., Immacolata Trivisani, C., Vagaggini, C., Stella, R., Angeletti, R., Iovenitti, G., Francardi, V., & Dreassi, E. (2022). Proteins from Tenebrio molitor: An interesting functional ingredient and a source of ACE inhibitory peptides. Food Chemistry, 393, 133409. https://doi.org/10.1016/j.foodchem.2022.133409

Chen, F., Jiang, H., Lu, Y., Chen, W., & Huang, G. (2019). Identification and in silico analysis of antithrombotic peptides from the enzymatic hydrolysates of Tenebrio molitor larvae. European Food Research and Technology, 245(12), 2687-2695. https://doi.org/10.1007/s00217-019-03381-2

Cho, H. R., & Lee, S. O. (2020). Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor). Food Research International, 133, 109194. https://doi.org/10.1016/j.foodres.2020.109194

Dai, C., Ma, H., Luo, L., & Yin, X. (2013). Angiotensin I-converting enzyme (ACE) inhibitory peptide derived from Tenebrio molitor (L.) larva protein hydrolysate. European Food Research and Technology, 236(4), 681-689. https://doi.org/10.1007/s00217-013-1923-z

Escobar‐Ortiz, A., Hernández‐Saavedra, D., Lizardi‐Mendoza, J., Pérez‐Ramírez, I. F., Mora‐Izaguirre, O., Ramos‐Gómez, M., & Reynoso‐Camacho, R. (2022). Consumption of cricket (Acheta domesticus) flour decreases insulin resistance and fat accumulation in rats fed with high‐fat and ‐fructose diet. Journal of Food Biochemistry, 46(9), e14269. https://doi.org/10.1111/jfbc.14269

Kouřimská, L., & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22-26. https://doi.org/10.1016/j.nfs.2016.07.001

Lourenço, F., Calado, R., Medina, I., & Ameixa, O. M. C. C. (2022). The Potential Impacts by the Invasion of insects reared to feed livestock and pet animals in europe and other regions: A critical review. Sustainability, 14(10), 6361. https://doi.org/10.3390/su14106361

Navarro del Hierro, J., Gutiérrez-Docio, A., Otero, P., Reglero, G., & Martin, D. (2020). Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Food Chemistry, 309, 125742. https://doi.org/10.1016/j.foodchem.2019.125742

Nino, M. C., Reddivari, L., Ferruzzi, M. G., & Liceaga, A. M. (2021). targeted phenolic characterization and antioxidant bioactivity of extracts from edible Acheta domesticus. Foods, 10(10), 2295. https://doi.org/10.3390/foods10102295

OECD, P. (2015). OECD-FAO agricultural outlook 2015-2024. https://stats.oecd.org/Index.aspx?DataSetCode=HIGH_AGLINK_2015

Ong, J. H., Liang, C. E., Wong, W. L., Wong, F. C., & Chai, T. T. (2021). Multi-target anti-sars-cov-2 peptides from mealworm proteins: An in silico study. Malaysian Journal of Biochemistry and Molecular Biology, 24(1), 83-91. https://1f169227-0328-4af2-99bc-24934f131be8.filesusr.com/ugd/66925b_804c93d9d0fe4852a85099d6e6b9e910.pdf

Orkusz, A. (2021). Edible insects versus meat—Nutritional comparison: Knowledge of their composition is the key to good health. Nutrients, 13(4), 1207. https://doi.org/10.3390/nu13041207

Osimani, A., Garofalo, C., Milanović, V., Taccari, M., Cardinali, F., Aquilanti, L., Pasquini, M., Mozzon, M., Raffaelli, N., Ruschioni, S., Riolo, P., Isidoro, N., & Clementi, F. (2016). Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. European Food Research and Technology, 243(7), 1157-1171. https://doi.org/10.1007/s00217-016-2828-4

Pali-Schöll, I., Verhoeckx, K., Mafra, I., Bavaro, S. L., Clare Mills, E. N., & Monaci, L. (2019). Allergenic and novel food proteins: State of the art and challenges in the allergenicity assessment. Trends in Food Science & Technology, 84, 45-48. https://doi.org/10.1016/j.tifs.2018.03.007

Ramos-Elorduy, J. (2009). Anthropo-entomophagy: Cultures, evolution and sustainability. Entomological Research, 39(5), 271-288. https://doi.org/10.1111/j.1748-5967.2009.00238.x

Ramos-Elorduy, J., Moreno, J. M. P., Prado, E. E., Perez, M. A., Otero, J. L., & de Guevara, O. L. (1997). Nutritional value of edible insects from the state of Oaxaca, Mexico. Journal of Food Composition and Analysis, 10(2), 142-157. https://doi.org/10.1006/jfca.1997.0530

Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Official Journal of the European Union, L 327, 1-22 http://data.europa.eu/eli/reg/2015/2283/oj

Regulation (EU) 2021/882. Commission Implementing Regulation (EU) 2021/882 of 1 June 2021 authorising the placing on the market of dried Tenebrio molitor larva as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470. Official Journal of the European Union, L 194, 16-21. http://data.europa.eu/eli/reg_impl/2021/882/oj

Regulation (EU) 2021/1975. Commission Implementing Regulation (EU) 2021/1975 of 12 November 2021 authorising the placing on the market of frozen, dried and powder forms of Locusta migratoria as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and amending Commission Implementing Regulation (EU) 2017/2470. Official Journal of the European Union, L 402, 10-16. https://eur-lex.europa.eu/eli/reg_impl/2021/1975/oj

Regulation (EU) 2022/169. Commission Implementing Regulation (EU) 2022/169 of 8 February 2022 authorising the placing on the market of frozen, dried and powder forms of yellow mealworm (Tenebrio molitor larva) as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470. Official Journal of the European Union, L 28, 10-16. http://data.europa.eu/eli/reg_impl/2022/169/oj

Regulation (EU) 2022/188. Commission Implementing Regulation (EU) 2022/188 of 10 February 2022 authorising the placing on the market of frozen, dried and powder forms of Acheta domesticus as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470. Official Journal of the European Union, L 30, 108-114. http://data.europa.eu/eli/reg_impl/2022/188/oj

Rivero-Pino, F., Guadix, A., & Guadix, E. M. (2021). Identification of novel dipeptidyl peptidase IV and α-glucosidase inhibitory peptides from Tenebrio molitor. Food & Function, 12(2), 873-880. https://doi.org/10.1039/d0fo02696d

Stork, N. E. (2018). How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology, 63(1), 31-45. https://doi.org/10.1146/annurev-ento-020117-043348

Tang, C., Yang, D., Liao, H., Sun, H., Liu, C., Wei, L., & Li, F. (2019). Edible insects as a food source: a review. Food Production, Processing and Nutrition, 1, 8. https://doi.org/10.1186/s43014-019-0008-1

Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., Maciuk, A., Mangelsdorf, I., McArdle, H. J., Naska, A., Pelaez, C., Pentieva, K., Siani, A., Thies, F., Tsabouri, S., Vinceti, M., Cubadda, F., Frenzel, T., Heinonen, M., Marchelli, R., . . . Knutsen, H. K. (2022). Safety of frozen and freeze‐dried formulations of the lesser mealworm (Alphitobius diaperinus larva) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 20(7), e07325. https://doi.org/10.2903/j.efsa.2022.7325

United Nations Department of Economic and Social Affairs, P. D. (2022). World Population Prospects 2022: Summary of Results. https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022

van Huis, A. (2020). Edible crickets, but which species? Journal of Insects as Food and Feed, 6(2), 91-94. https://doi.org/10.3920/JIFF2020.x001

Van Peer, M., Frooninckx, L., Coudron, C., Berrens, S., Álvarez, C., Deruytter, D., Verheyen, G., & Van Miert, S. (2021). Valorisation potential of using organic side streams as feed for Tenebrio molitor, Acheta domesticus and Locusta migratoria. Insects, 12(9), 796. https://doi.org/10.3390/insects12090796

Vercruysse, L., Van Camp, J., Morel, N., Rouge, P., Herregods, G., & Smagghe, G. (2010). Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats. Peptides, 31(3), 482-488. https://doi.org/10.1016/j.peptides.2009.05.029

Wilkinson, J. M. (2011). Re-defining efficiency of feed use by livestock. Animal, 5(7), 1014-1022. https://doi.org/10.1017/s175173111100005x

Xiaoming, C., Ying, F., Hong, Z., & Zhiyong, C. (2010). Review of the nutritive value of edible insects. In P. B. Durst, D. V. Johnson, & R. N. S. K. Leslie (Eds.), Forest insects as food: Humans bite back (pp. 85-92). Food and Agriculture Organization of the United Nations. http://www.doc-developpement-durable.org/file/Elevages/Insectes/edible%20forest%20insects.pdf#page=94

Xu, X., Sharma, P., Shu, S., Lin, T.-S., Ciais, P., Tubiello, F. N., Smith, P., Campbell, N., & Jain, A. K. (2021). Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food, 2(9), 724-732. https://doi.org/10.1038/s43016-021-00358-x

Zhu, D., Huang, X., Tu, F., Wang, C., & Yang, F. (2020). Preparation, antioxidant activity evaluation, and identification of antioxidant peptide from black soldier fly (Hermetia illucens L.) larvae. Journal of Food Biochemistry, 44(5), e13186. https://doi.org/10.1111/jfbc.13186

Zielińska, E., Baraniak, B., & Karaś, M. (2018). Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). International Journal of Food Science and Technology, 53(11), 2542-2551. https://doi.org/10.1111/ijfs.13848

Zielińska, E., Karaś, M., Baraniak, B., & Jakubczyk, A. (2020). Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. European Food Research and Technology, 246(7), 1361-1369. https://doi.org/10.1007/s00217-020-03495-y