FacebookLinkedin

Revista TecnoAlimentar

Liofilização: as vantagens dos pré-tratamentos emergentes - bibliografia

Por: Patrícia Antunes, Diogo Gonçalves, Enrique Pino-Hernández, Sara Dias, Telma Orvalho, Marco Alves

INOV.LINEA – Agri-food Technology Transfer and Valorization Center,

TAGUSVALLEY – Science and Technology Park

RESUMO

Alimentos perecíveis, como as frutas e vegetais, são propensos a reações bioquímicas e ao crescimento microbiológico devido à elevada atividade de água que possuem. A desidratação é um método eficaz para estabilizar esses alimentos, garantindo assim a segurança alimentar e diminuindo o desperdício alimentar. Destaca-se entre os processos de desidratação, a liofilização, uma tecnologia não térmica com maior capacidade de preservar nutrientes sensíveis ao calor e manter as características organoléticas do alimento. Contudo, a implementação industrial da liofilização enfrenta desafios devido ao seu elevado tempo de processamento e ao maior consumo de energia em comparação com a desidratação convencional. Neste âmbito, a aplicação de pré-tratamentos emergentes, como os campos elétricos pulsados, ultrassons e as altas pressões hidrostáticas, oferecem melhorias significativos no tempo de liofilização e nas características do alimento. A introdução destes processos inovadores pode facilitar a implementação industrial através da redução de custos e do aumento da aceitabilidade por parte do consumidor.

BIBLIOGRAFIA 

Berk, Z. (2018) Freeze drying (lyophilization) and freeze concentration. In: Berk, Z. (Ed.). Food Process Engineering and Technology. Academic Press. 3ed, 567-581.

Bonnechère, A.; Hanot, V.; Jolie, R.; Hendrickx, M.; Bragard, C.; Bedoret, T.; Van Loco, J. (2012) Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control, 25, 397–406.

Chemat, F.; Zill-e-Huma; Khan, M. K. (2011) Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, v. 18, n. 4, p. 813–835.

Ciurzynska, A.; Lenart, A.; Greda, K.J. (2014) Effect of pre-treatment conditions on content and activity of water and colour of freeze-dried pumpkin. LWT—Food Science Technol., 59, 1075–1081.

Colucci, D.; Fissore, D.; Rossello, C.; Carcel, J.A. (2018) On the effect of ultrasound-assisted atmospheric freeze-drying on the antioxidant properties of eggplant. Food Res. International, 106, 580–588.

Dolatowski, Z. J.; Stadnik, J.; Stasiak, D. (2007) Applications os ultrasound in food technology. Acta Scientarum Polonorum - Technologia Alimentaria., v. 3, n. 6, 88–99.

Dziki, D.; Polak, R.; Rudy, S.; Krzykowski, A.; Gawlik-Dziki, U.; Rózyło, R.; Mi´s, A.; Combrzy ´nski, M. (2018) Simulation of the process kinetics and analysis of physicochemical properties in the freeze drying of kale. Int. Agrophysics, 32, 49–56.

Fan, D.; Chitrakar, B.; Ju, R.; Zhang, M. (2020) Effect of ultrasonic pretreatment on the properties of freeze-dried carrot slices by traditional and infrared freeze-drying technologies. Dry. Technol., 1176-1183.

Fauster, T.; Giancaterino, M.; Pittia, P.; Jaeger, H. (2020) Effect of pulsed electric field pretreatment on shrinkage, rehydration capacity and texture of freeze-dried plant materials. LWT, 121.

Fellows, P. J. (2006) Tecnologia do processamento de alimentos: princípios e práticas. 2ª edição, Porto Alegre: Artmed; 602.

Fellows, P. J. (2017) Food Processing Technology: Principles and Practice. Woodhead Publishing. 4, 929 – 945.

Fernandes, L.; Casal, S.; Pereira, J.A.; Ramalhosa, E.; Saraiva, J.A. (2017) Effect of high hydrostatic pressure (hhp) treatment on edible flowers properties. Food Bioprocess Technol., 10, 799–807. 

Fissore, D.; Velardi, S. (2012) Freeze Drying: Basic Concepts and General Calculation Procedures. In Operations in Food Refrigeration; Mascheroni, R., Ed.; Taylor & Francis Group: Boca Raton; 47–68.

Garriga, M., Aymerich, M. T., Costa, S., Monfort, J. M., Hugas, M. (2002). Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiology, 19: 509- 518.

Garriga, M., Marcos, B., Aymerich, T., Hugas, M. (2003). Prospectiva de aplicación de altas presiones para la minimización de riesgos asociados a Salmonella y Listeria monocytogenes en embutidos madurados en frio. Eurocarnes, 12: 1-6.

Ghosh, S.; Gillis, A.; Levkov, K.; Vitkin, E.; Golberg, (2020) A. Saving energy on meat air convection drying with pulsed electric field coupled to mechanical press water removal. Innov. Food Sci. Emerg. Technol., 66.

Guasch-Ferré, M.; Bulló, M.; Estruch, R.; Corella, D.; Martínez-González, M.A.; Ros, E.; Covas, M.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; Lapetra, J.; Muñoz, M. Á.; Serra-Majem, L.; Babio, N.; Pintó, X.; Lamuela-Raventós, R. M.; Ruiz-Gutiérrez, V.; Salas-Salvadó, J. (2014). Dietary magnesium intake is inversely associated with mortality in adults at high cardiovascular disease risk. Journal of Nutrition, 144(1), 55-60.

Harguindeguy, M.; Fissore, D. (2019) On the Effects of Freeze-Drying Processes on the Nutritional Properties of Foodstuff: A Review. Drying Technol. In press, 846-868.

Haseley, P.; Oetjen, G.W. (2018) Freeze-Drying; Wiley-VCH: Veinheim, Germany, 421.

Hua, T.C.; Liu, B.L.; Zhang, H. (2010) Freeze-Drying of Pharmaceutical and Food Products. Woodhead Publishing: Great Abington, Cambridge, UK, 280.

Jorge, A.; Sauer Leal, E.; Sequinel, R.; Sequinel, T.; Kubaski, E.T.; Tebcherani, S.M. (20189 Changes in the composition of tomato powder (Lycopersicon esculentum Mill) resulting from different drying methods. J. Food Process. Preserv., 42, e13595.

Krzykowski, A.; Dziki, D.; Rudy, S.; Gawlik-Dziki, U.; Polak, R.; Biernacka, B. (2018) Effect of pre-treatment conditions and freeze-drying temperature on the process kinetics and physicochemical properties of pepper. LWT, 98, 25–30.

Lammerskitten, A.; Mykhailyk, V.; Wiktor, A.; Toepfl, S.; Nowacka, M.; Bialik, M.; Czy˙zewski, J.; Witrowa-Rajchert, D.; Parniakov, O. (2019) Impact of pulsed electric fields on physical properties of freeze-dried apple tissue. Innov. Food Science Technology, 57.

Mello, R.E.; Fontana, A.; Mulet, A.; Correa, J.L.G.; Cárcel, J.A. (2020) Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature. Dry. Technol., 38, 259–267.

Mohammadi X, Deng Y, Matinfar G, Singh A, Mandal R, Pratap-Singh A. Impact of Three Different Dehydration Methods on Nutritional Values and Sensory Quality of Dried Broccoli, Oranges, and Carrots. Foods. 2020 Oct 14;9(10):1464. doi: 10.3390/foods9101464. PMID: 33066677; PMCID: PMC7602416.

Merone, D.; Colucci, D.; Fissore, D.; Sanjuan, N.; Carcel, J.A. (2020) Energy and environmental analysis of ultrasound-assisted atmospheric freeze-drying of food. Journal Food Eng., 283.

Morais, A. R. D. V.; Alencar, D. N.; Xavier, F. H.; Oliveira, C. M. DE; Marcelino, H. R.; Barratt, G.; Fessi, H.; Egito, E. S. T. DO; Elaissari, A. (2016) Freeze-drying of emulsified systems: A review. International Journal of Pharmaceutics, 503, 102–114.

Morais, R. M. S. C.; Morais, A. M. M. B.; Dammak, I.; Bonilla, J.; Sobral, P. J. A.; Laguerre, J. C.; Afonso, M. J.; Ramalhosa, E. C. D. (2018). Functional Dehydrated Foods for Health Preservation. Journal of Food Quality, 1-29.

Miletić, N.; Popović, B.; Mitrović, O.; Kandić, M.; Leposavić, A. (2014). Phenolic compounds and antioxidant capacity of dried and candied fruits commonly consumed in Serbia. Czech Journal of Food Sciences, 32(4), 360-398.

Norton, T., Sun, D. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technology, 1: 2-34.

Oyinloye, T.M.; Yoon, W.B. (2020) Effect of freeze-drying on quality and grinding process of food produce: A review. Processes, 8, 354.

Orphanides, A.; Goulas, V.; Gekas, V. (2016) Drying Technologies: Vehicle to High-Quality Herbs. Food Eng. Rev., 8, 164–180.

Papon, P.; Leblond, J.; Meijer, P. (2002) The physics of phase transition – Concepts and applications, 2nd Edition, Springer, Berlin, 123-162.

Park, I.; Kim, J.U.; Shahbaz, H.M.; Jung, D.; Jo, M.; Lee, K.S.; Lee, H.; Park, J. (2019) High hydrostatic pressure treatment for manufacturing of garlic powder with improved microbial safety and antioxidant activity. Int. J. Food Sci. Technol., 54, 325–334. 

Parniakov, O.; Bals, O.; Lebovka, N.; Vorobiev, E. (2016) Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innov. Food Science Emerg. Technology, 35, 52–57.

Patist, A.; Bates, D. (2008) Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innovative Food Science & Emerging Technologies, v. 9, n. 2, 147–154.

Ren, F.; Perussello, C.A.; Zhang, Z.; Kerry, J.P.; Tiwari, B.K.; Impact of ultrasound and blanching on functional properties of hot-air dried and freeze-dried onions. LWT, v. 87, 102-111.

Shams, R.; Singh, J.; Dash, K.; Dar, A. (2022) Comparative study of freeze drying and cabinet drying of button mushroom Applied food research 2, no. 1: 100084.

Santos, N.  C.; Silva, W.  P.; Barros, S.  L.; Araújo, A.; Gomes, J.  P.; Almeida, R.  L.  J.; Nascimento, A. P. S.; Almeida, R. D.; Silva, C. M. D. P. S.; Queiroz, A. J. M.; Figueiredo, R. M. F. (2019). Study on Drying of Black Rice (Oryza sativa L.)

Shukla, S. (2011) Freeze Drying Process: A Review. Int. J. Pharm. Sci. Res., 2, 3061–3068.

Soria, A. C.; Villamiel, M. (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, v. 21, n. 7, 323–331.

Shopian, N. M.; Hamid, A. A.; Osman, A.; Saari, N.; Anwar, F.; Pak Dek, M. S.; Hairuddin, M. R. (2011) Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. International journal of molecular sciences, v. 12, n. 7, 4678-4692.

Vásquez, R.; Santos, M. L.; Álvarez, L. I. (2001) Market orientation and competitive strategies in industrial firms. Journal of Strategic Marketing, v. 9, 69-90.

Witrowa-Rajchert, D.; Wiktor, A.; Sledz, M.; Nowacka, M. (2014) Selected emerging technologies to enhance the drying process: A review. Dry. Technol, 32, 1386–1396

Wu, X.; Wang, C.; Guo, Y. (2020) Effects of the high-pulsed electric field pretreatment on the mechanical properties of fruits and vegetables. J. Food Eng., 274..

Xu, X.; Zhang, L.; Feng, Y.; Zhou, C.; Yagoub, A.; Wahia, H.; Ma, H.; Zhang, J.; Sun, Y. (2021) Ultrasound freeze-thawing style pretreatment to improve the efficiency of the vacuum freeze-drying of okra (Abelmoschus esculentus (L.) Moench) and the quality characteristics of the dried product. Ultrason. Sonochem., 70.

Yildiz, G.; Izli, G. (2019) The effect of ultrasound pretreatment on quality attributes of freeze-dried quince slices: Physical properties and bioactive compounds. Jounal Food Process Eng., 42, e13223.